Global Network Initiative for BioDental Education and Research

Hiroshima University Faculty of Dentistry
Organizing Committee

Chair
Motoyuki Sugai, Hiroshima, Japan

Takashi Takata, Hiroshima, Japan
Hiroki Nikawa, Hiroshima, Japan
Hidemi Kurihara, Hiroshima, Japan
Takashi Kanematsu, Hiroshima, Japan
Koichi Kato, Hiroshima, Japan
Masaru Sugiyama, Hiroshima, Japan
Yuji Yoshiko, Hiroshima, Japan
Katsuyuki Kozai, Hiroshima, Japan

Conference Secretariat:
Hiroshima University Faculty of Dentistry
1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
E-mail: bimes-bucho-sien@office.hiroshima-u.ac.jp

All rights reserved. No part of this material may be reproduced in any form or by any means without permission in writing from the organizing committee. Printed in Japan
Poster Session

A-1~A-10: Dental Education
B-1~B-32: Frontiers of Biological Science in Dentistry
C-1~C-10: Latest Trends in BioDental Engineering
D-1~D-23: Oral Health and Clinical Treatments

Airlangga University, Indonesia

01-1 [B-1] ................................................................. 113
Antioxidant effect of Nigella sativa extract in various concentration
with DPPH free radical scavenging assay
S. Kurnia, R. Safitri and E.M. Setiawatie

01-2 [B-2] ................................................................. 114
The role of TGF-β1 in alveolar bone resorption with Apical Periodontitis
D.A. Wahyuningrum

01-3 [D-1] ................................................................. 155
Nigella sativa oral rinse as an antioxidant effect reduced bleeding on probing
and pocket depth
E.M. Setiawatie

01-4 [D-2] ................................................................. 156
Changes in the antegonial angle and depth in the dentate Javanese population
E.R. Astuti

01-5 [B-3] ................................................................. 115
The antifungal effect of Stichopus hermannii extract to Candida albicans in vitro
K. Parisihni, S. Revianti and D. Pringgenies

01-6 [D-3] ................................................................. 157
Relationship between dental caries and salivary neutrophil level with nutrition
in children
R. Indrawati, M.D. Ariani, A. Rizqiawan and K. Suardita

01-7 [B-4] ................................................................. 116
The role of hypoxia to apoptosis on bone marrow mesenchymal stem cells (BMSCs)
culture for salivary gland defect therapy due to ionized radiation
S.W.M. Mulyani

01-8 [B-5] ................................................................. 117
Induction HEMA upregulated expression of NLRP3 in rat dental pulp tissue
W. Saraswati

Chulalongkorn University, Thailand

02-1 [B-6] ................................................................. 118
Interleukin 12 increased RANKL/OPG expression ratio in human PDL cells
B.I.N. Ayuthaya and P. Pavasant
02-2 [B-7] Genome-wide analyses in yeast model to investigate the mechanisms of Aggregatibacter actinomycetemcomitans cytotoxicity and distending toxin. 
O. Matangkasombut, P. Katare, M. Sugai and S. Mongkolsuk

02-3 [B-8] Antimicrobial activities of Croton weeds oil (Eupatorium adenophorum Spreng) against oral bacteria and fungi
K. Koolkaew, J.B.N. Sakolnakorn and P. Thayasirisung

University of Medicine and Pharmacy Ho Chi Minh City, Viet Nam
03-1 [D-4] Association between periodontitis and rheumatoid arthritis
B.V. Nguyen, H.M. Dang and H.P.T. Tran

University of Hong Kong, China

University of Indonesia, Indonesia
05-1 [C-1] Corrosion Properties of the Stainless Steel Bracket
T. Prasetyadi, B. Irawan and M. Karmiati

05-2 [D-5] Compound odontoma in the mandible: A case report
I. Damayanti, C. Johan, Pradono, L.D. Sulistyanti and R. Anne

05-3 [A-1] A new integrated Bioethics and Medical Laws course for Health science Students at University of Indonesia (2013)
M. Damiyanti and B. Irawan

05-4 [D-6] Ameloblastoma of mandible: a case report
M.Z. Anggriadi I. Inunu, V. Julia and B.S. Latief

05-5 [D-7] Management of maxillary ameloblastoma with vascularized bone graft
S. Hadisutjipto, D. Mahardhika and I. Tofani
The antifungal effect of *Stichopus hermanii* extract to *Candida albicans* in vitro

K. Parisihni\(^1\,^2\), S. Revianti\(^1\,^3\) and D. Pringgenies\(^2\)

\(^1\) Hang Tuah University, Surabaya, Indonesia  
\(^2\) Diponegoro University, Semarang, Indonesia  
\(^3\) Doctor Course Program, Airlangga University, Surabaya, Indonesia

**BACKGROUND**: Sea cucumbers have long been used for food and folk medicine in the communities of Asia. Regarding to the bioactive compound, some species of sea cucumber have been known to have the biomedical properties as antifungal agent. Oral candidiasis is the most common fungal infection in oral cavity caused by *Candida albicans*. An antifungal agent of natural resource will add the great value on the therapy of oral disease. In this preliminary study, golden sea cucumber (*Stichopus hermanii*) was examined its possible antifungal activity towards *Candida albicans* in vitro.

**OBJECTIVE**: The aim of this study was to examine the antifungal effect of *Stichopus hermanii* extract to the growth of *Candida albicans*.

**MATERIAL AND METHOD**: The study was an experimental laboratories research with post test only control group design. Three concentration of *Stichopus hermanii* methanolic extract: 20 mg/mL, 40 mg/mL, 80 mg/mL, were tested its antifungal effect against *Candida albicans* by disk diffusion method. The treatment groups were compared to Nystatin oral solution 100.000 IU/ml as positive control and DMSO 1% as negative control. The antifungal effect was examined by measure the diameter of the clear zone around the disk. Data was analyzed by Anova, followed by LSD test.

**RESULTS**: The result of this study showed the clear zone around the disc of *Stichopus hermanii* extract in all concentrations. It had been proved that antibacterial action of extract *Stichopus hermanii* could inhibit the growth *Candida albicans* (p < 0.05). The largest diameter of the clear zone around the disc was in the concentration of 80 mg/mL.

**CONCLUSION**: *Stichopus hermanii* extract had the antifungal effect against *Candida albicans*. Further in vivo study need to be conducted to explore the potential use of the extract as antifungal agent.
The antifungal effect of Stichopus hermani extract to Candida albicans in vitro

Kristianti Parindito, Syamsulina Revianti, Deliantis Pringgianti

Hak Tahun University, Surabaya, Indonesia / PhD Student of Airlangga University, Surabaya, Indonesia / Diponegoro University, Semarang, Indonesia

BACKGROUND

Indonesian sea possess many species of sea cucumber, *Stichopus hermani* is the one of the popular ones. Instead of its economical used as meal consume, it was reported in some research that *Stichopus hermani* as some other species of sea cucumber proved to have some medical properties. A natural source of antifungal agent could become the novel alternative solution in therapy of oral candidiasis.

Candidiasis is the commonest fungal infection in oral cavity, its prevalence raised specially along with the raise prevalence of HIV-AIDS. A natural source of antifungal agent could become the novel alternative solution in therapy of oral candidiasis.

**Extract of sea cucumber has known to have antibacterial and antifungal properties**

**Hokharia hissa** or Hokharia is sea cucumber and some holothurians species have antifungal action to *Candida albicans* Apportioning *A. albolabris*.

**OBJECTIVE**

To examine the antifungal effect of *Stichopus hermani* extract to the growth of *Candida albicans*.

**MATERIAL and METHOD**

Experimental laboratory research with post test only control group design

**Extract Procedure**

Samples of *Stichopus hermani* are collected from Banyuwangi a coastal region.

Cleaned, immersed in water for 24 hr, sliced in dryer machine, cut in small pieces of 5-10 cm.

Extraction process: maceration with methanol solvent 4:1 (4:1) hr. Filtrate separation and solvent rotary evaporation.

Each extract then diluted with 1% DMSO into 5 groups.

**RESULTS**

The Result of Disc Diffusion Method

![Result Graph](image-url)

<table>
<thead>
<tr>
<th>Concentration of <em>Stichopus hermani</em> extract</th>
<th>Diameter of Inhibition Zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 mg/ml</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00 mg/ml</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00 mg/ml</td>
<td>0.00</td>
</tr>
<tr>
<td>3.00 mg/ml</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00 mg/ml</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**REFERENCES**


**CONCLUSION**

Stichopus hermani extract had the antifungal effect against *Candida albicans*.

Acknowledgement: This research was supported by a grant from Fundamental Research Program, funded by the Ministry of Education and Culture - Indonesia.

Contact Person: Kristianti Parindito, Department of Oral Biology, Faculty of Dentistry, Hang Tahun University, Jl. Arief Rahman Hakim 150 Surabaya 60111. Phone: 031-5959219, E-mail: kendriya@hakta.ac.id
THE ANTIFUNGAL EFFECT OF Stichopus hermanii EXTRACT TO Candida albicans IN VITRO

Kristanti Parisihni1,2, Syamsulina Revianti1,2, Delianis Pringgenies3

1 Hang Tuah University, Surabaya, Indonesia
2 PhD Student of Airlangga University, Surabaya, Indonesia
3 Diponegoro University, Semarang, Indonesia

BACKGROUND: Sea cucumbers have long been used for food and folk medicine in the communities of Asia. Regarding to the bioactive compound, some species of sea cucumber have been known to have the biomedical properties as antifungal agent. Oral candidiasis is the most common fungal infection in oral cavity caused by Candida albicans. An antifungal agent of natural resource will add the great value on the therapy of oral disease. In this preliminary study, golden sea cucumber (Sticophus hermanii) was examined its possible antifungal activity towards Candida albicans in vitro.

OBJECTIVE: The aim of this study was to examine the antifungal effect of Stichophus hermanii extract to the growth of Candida albicans

MATERIAL AND METHOD: The study was an experimental laboratories research with post test only control group design. Three concentration of Stichopus hermanii methanolic extract: 20 mg/mL, 40 mg/mL, 80 mg/mL, were tested its antifungal effect against Candida albicans by disk diffusion method. The treatment groups were compared to Nystatin oral solution 100.000 IU/ml as positive control and DMSO 1% as negative control. The antifungal effect was examined by measure the diameter of the clear zone around the disk. Data was analyzed by Anova, followed by LSD test.

RESULT: The result of this study showed the clear zone around the disc of Stichopus hermanii extract in all concentrations. It had been proved that antibacterial action of extract Stichopus hermanii could inhibit the growth Candida albicans (p< 0.05). The largest diameter of the clear zone around the disc was in the concentration of 80 mg/ mL.

CONCLUSION: Stichopus hermanii extract had the antifungal effect against Candida albicans. Further in vivo study need to be conducted to explore the potential use of the extract as antifungal agent.

Keywords: Stichopus hermanii, antifungal, Candida albicans

Correspondence: Kristanti Parisihni, Department of Oral Biology, Faculty of Dentistry Hang Tuah University, Surabaya – Indonesia, Jl. Arif Rahman Hakim 150, Surabaya 60111 Indonesia, Telp/fax : +62315912191, e-mail:tanti_kris@yahoo.co.id

INTRODUCTION

Indonesian sea possess many species of sea cucumber, Sticophus hermanii is the one of the popular ones1. Instead of its economical used as meal consume, it was reported in some research that Sticophus hermanii as some other species of sea cucumber proved to have some medical properties2,3.

Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. Generally, most species of sea cucumber share the same bioactive compound mentioned above but in different level contain4,5,6.
Candidiasis is the most common fungal infection in oral cavity, its prevalence raised specially along with the raise prevalence of HIV-AIDS. A natural source of antifungal agent could become the novel alternative solution in therapy of oral candidiasis.

Extract of sea cucumber has been known to have antibacterial and antifungal properties. *Stichopus hermanii* extract has been proved to have antibacterial effect against Gram positive and negative bacteria: *Escherchia coli*, *Pseudomonas* sp., *V. vionivica*, *Staphylococcus aureus*, *Streptococcus mutans*, *Holothuria atra*, *Holothuria scabra* and some holothurians species have antifungal action to *Candida albicans*, *Aspergillus* sp. This study was aimed to examine the antifungal effect of *Stichopus hermanii* extract to the growth of *Candida albicans*.

**MATERIAL AND METHODS**

This study is an experimental laboratory research with post test only control group design. Methanolic extract of *Sticopus hermani* was be tested its antifungal activity to *Candida albicans* by disc diffusion method.

**Extract preparation**

Adult sea cucumber weight 100-250 gr were collected from Karimunjawa coastal, washed by running water to clean the dirt, immersed in fresh water for one night to remove the salt and adherent parasite. Sea cucumber then splitted, the inner abdomen were removed then cleaned and washed, so only the flesh of the body proceed to next process.

Thirty five (35) sea cucumber sample were cut into small pieces of 3-10 cm, the wet weight then measured then dried up in solar dryer for 3-4 days to reduce the water content. The dried sea cucumber then cut into smaller pieces of 1 cm, mashed by blender the the weight were measured and ready for the maceration process. Two hundred and fifty (250) gram mashed dry sea cucumber sample immersed until soaked in 500 mL methanol solvent for 24 hour at room temperature, then filtered with filter paper to separate filtrate and residue.

Residue then reimmersed in 500 mL methanol solvent for 24 hour, again filtered with filter paper to separate filtrate and residue, resulted in maceration filtrate with the ratio of 250 gram sample / 1000 mL solvent (1:4 w/v).

Methanol (polar) filtrate got homogenized with 1000 mL hexane solvent (non polar) then performed partition with separatory funnel the each of the filtrate layer of methanol and hexane solvent were separated.

Methanol (polar) filtrate then got rehomogenized with 1000 mL chloroform solvent (semi polar), performed partition with separatory funnel the each of the filtrate layer of methanol and chloroform solvent were separated. Each filtrate were separated by its solvent with rotary evaporator until extract produced. The evaporated extract then placed in the vial and stored in -70°C.

**Fungal suspension preparation**

*Candida albicans* were cultured in Sabouraud dextrose agar, suspension were prepared by inoculating one single loop of fungal colony to Sabouraud broth médium, incubated in 37°C for 24 hour. Candida suspension was adjusted its turbidity to standard McFarland 0,5 by nephelometer Phoenix.

Antifungal activity testing by disk diffusion method. The samples were divided into 5 groups each consisted of 6 samples i.e : positive control was given nystatin oral solution 100.000 IU, negative control was given DMSO 1%, treatment group were given *Sticopus hermanii* extract with concentration of 20%, 40% and 80%. Antifungal activity test was performed by disk diffusion method on Mueller Hinton agar.

Fungal suspension of *Candida albicans* equal to 0,5 McFarland was swabbed inoculated onto Muller Hinton agar plate. Sterile paper disks were immersed for 15 second into each concentration of extracts for treatment groups, for control negative groups in DMSO 1%, each, and for the positive control group in nystatin oral solution, then put on
to Muller Hinton agar, gently pressed for a while and leave, incubated in 37°C for 2x24 hour.

The clear zone around the disk showed inhibition effect to the growth of Candida albicans. Diameter of inhibition zone was measured with digital caliper.

**RESULT**

All the treatment groups and positive control showed the inhibition zones around the disk, but not the negative control as shown in fig 1.

![Image of inhibition zones around discs](image)

Fig 1. The inhibition zone on disk diffusion method of antifungal activity of Sticophus hermanii extract to Candida albicans

Table 1 The averagediameter of inhibition zone of Sticophus hermanii extracts on serial concentration to Candida albicans compared to control groups (stated in mm).

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control</td>
<td>11,4833</td>
<td>1,10306</td>
</tr>
<tr>
<td>Positive Control</td>
<td>5,5740</td>
<td>.01242</td>
</tr>
<tr>
<td>Stichopus Hermanii 20mg/ml</td>
<td>9,8440</td>
<td>2,74243</td>
</tr>
<tr>
<td>Stichopus Hermanii 40mg/ml</td>
<td>9,9027</td>
<td>.81027</td>
</tr>
<tr>
<td>Stichopus Hermanii 80mg/ml</td>
<td>10,1360</td>
<td>.76288</td>
</tr>
</tbody>
</table>

![Graph of inhibition zones](image)

Fig 2. The graphic of inhibition zone of Sticophus hermanii extracts on serial concentration to Candida albicans compared to control groups

Table 2. ANOVA and LSD test summary of inhibition zone of Sticophus hermanii and Holothuria atra extracts on serial concentration extracts to Porphyromonas gingivalis compared to control groups

<table>
<thead>
<tr>
<th>(I) Group</th>
<th>(J) Group</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control</td>
<td>Positive Control</td>
<td>.000*</td>
</tr>
<tr>
<td>Stichopus Hermanii 20mg/ml</td>
<td>Stichopus Hermanii 40mg/ml</td>
<td>.002*</td>
</tr>
<tr>
<td>Stichopus Hermanii 40mg/ml</td>
<td>Stichopus Hermanii 80mg/ml</td>
<td>.003*</td>
</tr>
<tr>
<td>Positive Control</td>
<td>Stichopus Hermanii 20mg/ml</td>
<td>.011*</td>
</tr>
<tr>
<td>Stichopus Hermanii 40mg/ml</td>
<td>Stichopus Hermanii 80mg/ml</td>
<td>.000*</td>
</tr>
<tr>
<td>Stichopus Hermanii 80mg/ml</td>
<td>Stichopus Hermanii 80mg/ml</td>
<td>.573</td>
</tr>
<tr>
<td>Stichopus Hermanii 40mg/ml</td>
<td>Stichopus Hermanii 80mg/ml</td>
<td>.652</td>
</tr>
</tbody>
</table>

All treatment groups in all concentrations showed inhibition zones but less than nystatin as positive control. Further statistical analysis by two-way ANOVA test and LSD multiple comparison test at 5% significance level showed the significant difference on all concentration of Sticophus hermanii extract compared to negative and positive control group (p<0.05).

**DISCUSSION**

Result of antifungal sensitivity test showed inhibition zone in all treatment group and in control positive group, means that extract of Sticophus hermanii has antifungal effect to C. albicans in vitro. The largest diameter of inhibition zone of treatment group was in the concentration of 80 mg/mL but still less than in the control group of Nystatin (p< 0.05).

Nystatin is a polyene antifungal drug to which many molds and yeasts are sensitive, including Candida spp, used as the positive control for it’s the common topical antifungal agent therapy on oral candidiasis. Nystatin exerts its antifungal activity by binding to ergosterol found in fungal cell membranes. Binding to ergosterol causes the formation of pores in the membrane. Potassium and other cellular constituents leak from the pores causing cell death7,8.

Sea cucumber extract have been known to have the antifungal property, assumed to be related to its content of alcaloid, saponin and triterpen glycoside3,12,13,14.
Saponin were identified in the content of sea cucumber extract\textsuperscript{2,14}. It is secondary metabolites of glycosidic nature widely distributed in higher plants and marine invertebrates resulted as the defend mechanism also has the biological properties i.e. the ability to lyse erythrocytes or to foam. It form complexes with cell membrane cholesterol leading in consequence to pore formation & cell permeabilization, alterations in the negatively charged carbohydrate portions on the cell surface. It also could stimulate apoptotic process in tumor cells, usually through its intrinsic pathway, non apoptotic processes were also involved such as cell cycle arrestment, autophagic cell death stimulation, inhibiting of metastasis and cytoskeleton disintegration\textsuperscript{16,17}.

Saponin performed its antifungal activity by the interaction with sterol membrane of \textit{C. albicans} and disrupting the cell wall ‘s integrity caused the cell death, similar with the mechanism action of nystatin.

\textit{Stichopus hermanii} have been extracted by methanolic extract\textsuperscript{14}. The antibacterial compound of sea cucumber assumed to be polar for it is dissolved in methanol solvent and have been proven to have the antibacterial, antifungal and cytotoxic agent on some studies\textsuperscript{2,5,9,14}. In this study, \textit{Stichopus hermanii} extract was examined as the whole extract, probably the optimum content of have not been explored and performed its optimal antibacterial activity. After the methanolic extraction process, the extract was diluted in concentrations with the solvent of DMSO 1\% to prevent cytotoxicity. By this dilution, probably the saponin optimum content of have not been explored and performed its optimal antifungal activity. In previous research of other sea cucumber species, it was stated that \textit{Holothuria scabra} extract 7 mg/ml in methanol solvent had proved its antifungal activity against \textit{Candida albicans}.

Triterpene glicoside content has also been known to have immunomodulatory property on macrophage for the response to infection\textsuperscript{13,15}, thus it can be other mode of mechanism of antifungal respond but cannot be examined in in vitro study. Further in vivo approach need to be conducted to explore this he potential use of the extract as antifungal agent.

CONCLUSION
\textit{Stichopus hermanii} extract had the antifungal effect against \textit{Candida albicans}. Further in vivo study need to be conducted to explore the potential use of the extract as antifungal agent.

Acknowledgement :
This research was supported by a grant from Fundamental Research Program, funded by Ministry of Education and Culture Indonesia.

References