Majalah Ilmiah Kelautan

- Ricky Rositasary
 Karakteristik Sebaran Foxaminfera Bentik sebagai Indikator Kondisi Peralatan di Teluk Jakarta
- Dewi Hidayati, Ninis Trisyani
 Pengaruh Pola Tanam terhadap Hasil Panen Alga Eucheuma Cottoni dalam upaya Intensifikasi Lahan
- Andi Chasunisa Mapangara
 Penentuan Hierarki Pelabuhan sebagai Konsep Pengembangan Pelabuhan Kawasan Timur Indonesia
- Irfan Eko Sandjaja
 Teknologi Rancong Bangun Sistem Alat Tangkap Ikan bagi Nelayan Bagian di Lombok Barat Nusa Tenggara Barat
- VVi Djanat Prasita, Is Yuniast. Nuhman
 Evaluasi Kondisi Lingkungan Peralatan Kawasan Pertambakan di Gresik Jawa Timur
- Heri Suporno
 Analisa Pengaruh Tingkat Fasilitas Produksi Terhadap Cost/CGT
- Falth Suaidi
 Strategi Pengembangan Pariwisata Bahrani dalam Rangka Kerjasama Regional Maritim
- Arya Brahmantha
 Program Fludifikasi sebagai Upaya Pencucian Karas Gigi pada Masyarakat Pesat
- Baharudin Ali, Cahyadi Sugeng J.M, Samudro
 Prediksi Resonansi Gerakan Roda Kapal Ikan pada Kondisi Gelombang Tinggi
- Bambang Gunawan
 Studi Tentang Manfaat Rumpit Laut (Eucheuma Cottoni) dalam Meningkatkan Nilai Kandungan Serat dan Yodium Pada Mi Basah
- Agoes Sugianto
 Toksilitas Drilling Fluid Terhadap Burung Udang Windu (Penaeus monodon Fab.)

UNIVERSITAS HONGTEN
Surabaya
Juli 2005

NEPTUNUS
Vol. 12
No. 1
Hal 1 - 74
Surabaya
Juli 2005
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Karakteristik Sebaran Foraminifera Bentik sebagai Indikator Kondisi Perairan di Teluk Jakarta.</td>
<td>Ricky Rositasary</td>
<td>1-5</td>
</tr>
<tr>
<td>2</td>
<td>Pengaruh Pola Tanam terhadap Hasil Panen Alga Eucheuma alvarezii dalam upaya Intensifikasi Lahan.</td>
<td>Dewi Hidayati, Ninis Trisyani</td>
<td>6-10</td>
</tr>
<tr>
<td>3</td>
<td>Penentuan Hierarki Pelabuhan sebagai Konsep Pengembangan Pelabuhan Kawasan Timur Indonesia.</td>
<td>Andi Chairunnisa Mappangara</td>
<td>11-18</td>
</tr>
<tr>
<td>6</td>
<td>Analisa Pengaruh Tingkat Fasilitas Produksi Terhadap Cost/CGT.</td>
<td>Heri Supomo</td>
<td>33-38</td>
</tr>
<tr>
<td>7</td>
<td>Strategi Pengembangan Pariwisata Bahari dalam Rangka Kerjasama Regional Maritim.</td>
<td>Falih Suaedi</td>
<td>39-45</td>
</tr>
<tr>
<td>9</td>
<td>Prediksi Resonansi Gerakan Roll Kapal Ikan pada Kondisi Gelombang Tinggi.</td>
<td>Baharudin ali, Cahyadi Sugeng JM, Samudro</td>
<td>53-58</td>
</tr>
<tr>
<td>10</td>
<td>Studi Tentang Manfaat Rumput Laut (Eucheuma Cottonii) dalam Meningkatkan Nilai Kandungan Serat dan Yodium Pada Mi Basah.</td>
<td>Bambang Gunawan</td>
<td>59-66</td>
</tr>
<tr>
<td>11</td>
<td>Toksisitas Drilling Fluid Terhadap Benur Udang Windu (Peneaus-monodon Fab.)</td>
<td>Agoes Sugianto</td>
<td>67-74</td>
</tr>
</tbody>
</table>
Pengaruh Pola Tanam terhadap Hasil Panen Alga *Eucheuma alvarezi* dalam upaya Intensifikasi Lahan

Dewi Hidayati¹, Ninis Trisyani²

Abstract: This study was conducted in Situbondo district in order to find out the influence of different cultivating patterns on *eucheuma alvarezi* productivity. In this experiment four kinds of cultivating patterns i.e. the one-level-rafting floating methods, parallel and perpendicular to coastline; and the two-level-rafting floating methods, parallel and perpendicular to coastline. The results measured with ANOVA in 5% significance level suggested that different cultivating patterns did not significantly influence the productivity of *eucheuma alvarezi*. There were no differences in the productivity because the level of stream velocity was low. The one-level-rafting floating methods did not show any differences in productivity from the two-level-rafting floating methods because the *algae* cultured in lower raft of the two-level-rafting floating methods tended to have a plague which made the *algae* easily broken and lost. Based on the results of this research, it is suggested that farmers be encouraged to use the one-level-rafting floating methods in cultivating *eucheuma alvarezi* because economically the building of one-level-rafts is much cheaper and requires less capital.

Keywords: *eucheuma alvarezi*, rafting-floating method, productivity

Correspondence:
¹ Biology Department, Faculty of Mathematics and Science, ITS Surabaya.
² Marine Technology and Fishery School of Hang Tuah University, Surabaya.

PENDAHULUAN

Indonesia adalah negara kepulauan dengan wilayah laut yang sangat luas. Penggalian dan pengembangan sumber daya laut masih sangat diperlukan untuk meningkatkan kualitas hidup masyarakat Indonesia terutama yang berada pada wilayah perairan. Oleh karena itu penelitian yang berkaitan dengan sumber daya laut hayati perlu dilakukan dalam upaya mencari alternatif mata pencaharian bagi nelayan atau penduduk wilayah perairan.

Salah satu sumber daya laut yang mudah dibudidayakan dan bernilai ekonomis tinggi adalah rumput laut dengan spesies *Eucheuma alvarezi*. Jenis ini banyak digunakan dalam berbagai industri karena mengandung karagenan, yaitu suatu senyawa polisakarida. Produksi rumput laut di Indonesia dari tahun ke tahun cenderung terus meningkat karena tehnologi budidaya rumput laut sudah dikuasai oleh sebagian masyarakat perairan, akan tetapi produksi yang melimpah tersebut tidak diimbangi dengan kualitas yang baik sehingga mengakibatkan penolakan hasil rumput laut oleh kalangan eksportir (Kadi dan Atmadja, 1988).

Pola tanam merupakan salah satu faktor yang menentukan kualitas dan produktivitas tanaman budidaya. Pada saat ini pola tanam yang dilakukan di sebagian lahan budidaya masih menggunakan pola konvensional. Pola konvensional yang banyak digunakan ialah budidaya dengan metode rakit apung satu tingkat seperti yang telah dikembangkan oleh Pusat Penelitian Oseanologi LIPI. Pada metode ini, rakit diletakkan di laut tanpa memperhatikan arah arus. Pola tanam pada budidaya rumput laut dengan memaksimalkan pola arus pada wilayah perairan masih belum banyak diteliti. Dengan demikian penelitian pola tanam rumput laut khususnya alga *Eucheuma alvarezi* yang berkaitan dengan arah arus dan jumlah susunan rakit apung perlu dila-

METODE PENELITIAN

Alga *Eucheuma alvarezi*

Penulisan Faktor Lingkungan: Faktor lingkungan yang diukur adalah salinitas, kecepatan arus, kekeruhan, oksigen terlarut, pH, suhu, dan pasang surut. Pengukuran faktor lingkungan dilakukan setiap dua minggu selama penelitian.

Penanaman: Penanaman *E. alvarezi* dilakukan dengan menggunakan metode rakit apung monoline. Pada metode ini *E. alvarezi* diikatkan pada tali monofilamen dengan menggunakan rakit. Rakit apung dibuat dari bambu berbentuk empat persegi panjang berukuran 2 x 3 m (gambar 1). Rakit apung dua tingkat dibuat dengan menyusun dua buah rakit apung dengan jarak antar rakit setinggi 30 cm (gambar 2). Bibit ditanam dengan jarak tanam 12.5 x 25 cm. Pada tiap rakit apung ditambahkan pemberat dari batu yang diberi jatuh tali, berfungsi menahan rakit agar tidak terbawa arus. Rakit dilekatkan di lokasi penelitian dengan beberapa variasi pola tanam.

Gambar 1. Rakit Setingkat

Gambar 2. Rakit Dua Tingkat

Pembagian kelompok menurut jauh dekatnya terhadap sumber gerakan air ialah: K1: dekat gerakan air (ris ke-1); K2: agak jauh dari gerakan air (ris ke-4); K3: jauh dari gerakan air (ris ke-7).

Pengumpulan hasil pengukuran faktor lingkungan dilakukan setiap 14 hari. Pengukuran produktivitas dilakukan dengan mengukur berat basah setelah 28 hari atau 4 minggu setelah penanaman.

Pengukuran produktivitas biomass E. alvarezii pasca panen dengan mengukur berat basah alga per satuan meter persegi (kg/m²). Berat tanaman ditimbang dengan cara menirisikan rumput laut terlebih dahulu selama ±15 menit. Penimbangan dilakukan dengan menggunakan triple beam. Untuk mengetahui pengaruh pola tanam terhadap produktivitas biomass pasca panen maka dilakukan analisa statistik menggunakan ANOVA. Jika Hasil berbeda nyata, analisa dilanjutkan dengan pengujian perbedaan pengaruh antar perlakuan menggunakan uji Duncan dengan taraf kesalahan 5%.

HASIL DAN PEMBAHASAN

Faktor Lingkungan

Tabel 1. Hasil pengukuran faktor lingkungan selama penelitian

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minggu ke-0</th>
<th>Minggu ke-2</th>
<th>Minggu ke-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinitas (%)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Arus (cm/dt)</td>
<td>5,77</td>
<td>2,85</td>
<td>3,39</td>
</tr>
<tr>
<td>Kekeringan (Ntu)</td>
<td>4 - 5</td>
<td>8</td>
<td>11,6</td>
</tr>
<tr>
<td>Oksigen terlarut (ppm)</td>
<td>6,27 - 7,57</td>
<td>10,27 - 14,89</td>
<td>11,34 - 13,59</td>
</tr>
<tr>
<td>pH</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Temperatur (°C)</td>
<td>33</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>Pasang surut (dm)</td>
<td>7,7 - 21</td>
<td>9 - 24</td>
<td>11 - 23</td>
</tr>
</tbody>
</table>

Kecepatan arus relatif kecil dibanding kecepatan arus yang optimum untuk pertumbuhan E. alvarezii yaitu antara 20 - 40 cm/dt. Kandungan oksigen terlarut dalam lokasi penelitian relatif tinggi dan cukup memenuhi syarat untuk kehidupan makhluk hidup di air dimana batas minimum kandungan oksigen terlarut adalah 6 ppm. Kandungan oksigen terlarut di lapisan permukaan tempat budidaya E. alvarezii relatif tinggi karena adanya pasokan oksigen dari atmosfir yang absorpsi air dan pengadukan oksigen kenaikan karena suhu semakin meningkat. Pengukuran kekeruhan mencapai 11,6 Ntu pada masa penanaman seperti untuk pertumbuhan E. alvarezii tidak kekeruhan. Kedalaman pas mantab, kemudahan untuk pemerasan air yang baik yang disebabkan oleh produktivitas.

Produktivitas

Tabel 2. Produktivitas relatif E. alvarezii

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,14*</td>
<td>5,70*</td>
<td>4,97*</td>
</tr>
</tbody>
</table>

Keterangan: huruf sama menunjukkan tidak berbeda nyata.

Produksi yang dihasilkan pada waktu pola tanam tidak berbeda nyata karena rumpun laut pada 1 karat timbulan tidak terjadi dengan warna yang juga nampak ialah thallus kaku kering yang didebayakan oleh mencekupnya yang nampak adalah arus yang terlalu lebar mempengaruhi pembukaan thallus. Sementara mempengaruhi memuaskan thallus mencapai aktivitas fotosintesis yang tidak berbeda nyata.
Acak Kelompok (RAK) sub sampling garis pantai. Pengelompokan dilakukan terbagi menjadi: A1: rakit satu tingkat; A2: garis pantai yang terbagi menjadi: B1: dap sumber gerakan air ialah: K1: dekat e-4; K3: jauh dari gerakan air (ris ke-7) dilakukan setiap 14 hari. Pengukuran cahaya matahari, kemudahan untuk pemeliharaan dan selain itu E. alvarezi juga membutuhkan perega-
nakan air yang baik yang disebabkan oleh arus pasang surut.

Produktivitas

Biomassa tanaman merupakan ukuran yang paling sering digunakan untuk menggambarkan dan mempelajari pertumbuhan tanaman. Ini didasarkan atas kenyataan bahwa taksisan biomassa tanaman relatif mudah diukur dan merupakan integrasi hampir semua peristiwa yang dialami tanaman. Produksi biomassa mengakibatkan pertambahan berat dan pertambahan ukuran yang dapat dinyatakan secara kuantitatif.

Berdasarkan perhitungan Anova, produktivitas relatif E. alvarezi selama 28 hari dengan beberapa variasi pola tanam secara umum tidak menunjukkan perbedaan yang signifikan pada taraf 5%. Pada tabel 2 terlihat bahwa semua pola tanam menunjukkan nilai produktivitas yang tidak berbeda nyata.

Tabel 2. Produktivitas relatif E. alvarezi selama 28 hari (kg/m²)

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Perlakuan</th>
<th>A</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>8,14<sup>a</sup></td>
<td>5,25<sup>a</sup></td>
<td>4,58<sup>a</sup></td>
<td>6,12<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>5,70<sup>a</sup></td>
<td>6,37<sup>a</sup></td>
<td>4,90<sup>a</sup></td>
<td>2,37<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>4,97<sup>a</sup></td>
<td>3,89<sup>a</sup></td>
<td>5,51<sup>a</sup></td>
<td>6,59<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: huruf sama menunjukkan tidak berbeda secara signifikan pada taraf kepercayaan 5%

Produksi yang dihasilkan pada pola tanam rakit dua tingkat tidak jauh berbeda dengan yang satu tingkat karena rumput laut pada tingkat kedua (bawah) cenderung terkena penyakit. Penyakit yang timbul ditandai dengan warna thallus yang memutih, penyakit ini disebut ice-ice. Kelainan yang juga nampak ialah thallus kaku dan tidak lentur serta adanya berak-berak berwarna coklat kehitaman yang disebabkan oleh menempelnya sedimen. Faktor lain yang menyebabkan timbulnya penyakit adalah arus yang terlalu tenang (2,85 - 5,77 cm/det) menyebabkan sedimen mudah menempel pada permukaan thallus. Sedimen yang menempel pada thallus menyebabkan cahaya matahari tidak dapat menembus thallus sehingga fotosintesis tidak dapat berlangsung dengan baik. Menunrunya aktivitas fotosintesis menyebabkan energi yang dihasilkan berkurang sehingga daya
tahan tanaman menurun dan mudah terserang penyakit. Kondisi ini diperburuk dengan semakin meningkatnya kekeruhan dari penanaman awal sebesar 4 - 5 Ntu menjadi 11,6 Ntu. Peningkatan kekeruhan terjadi karena arus yang relatif tenang sehingga kotoran yang terbawa bersama arus akan menempel pada biomassa rumput laut.

Biomassa tanaman pada rakit bawah relatif kecil daripada biomassa pada rakit atas karena setelah terjadi pemutihan pada thallus (karena ice-ice), thallus kemudian membusuk hingga akhirnya patah dan hanyut oleh arus. Daya tahan tanaman yang lebih baik terdapat pada tanaman rakit atas dan biomassa yang diperoleh dari rakit tersebut lebih besar. Hal ini disebabkan tanaman yang dekat permukaan lebih bebas dari pengaruh sedimen yang teraduk dari dasar. Selain itu cahaya matahari yang diterima oleh tanaman di permukaan lebih baik karena penetrasi cahaya matahari yang diterima lebih besar. Dengan demikian aktivitas fotosintesis dapat berlangsung lebih baik.

KESIMPULAN

Kesimpulan yang dapat diambil dari penelitian ini adalah bahwa arah tanam yang berbeda terhadap garis pantai dan jumlah tingkat rakit yang berbeda tidak berpengaruh terhadap biomassa alga E. alvarezii.

DAFTAR PUSTAKA