• The role of ubiquinone supplementation on osteogenesis of non-vascularized autogenous bone graft
• Expression of CD133 in various premalignant and proliferative lesions
• Expression analysis of CD63 in salivary neutrophils and the increased level of *Streptococcus mutans* in severe early childhood caries
CONTENTS

1. Expression of bone morphogenetic protein-2 after using chitosan gel with different molecular weight on wound healing process of dental extraction
 Sularsih and Endah Wahjuniingsih ... 53–58

2. The role of ubiquinone supplementation on osteogenesis of non-vascularized autogenous bone graft
 Irham Taufiqurrahman, Ahmad Hartijadi, Roberto M. Simanjuntak, Coen Pramono D, and Istiati ... 59–63

3. Expression of CD133 in various premalignant and proliferative lesions
 Rahmi Amtha, Indrayadi Gunardi, Ferry Sandra, and Diah Savitri Ernawati ... 64–68

4. The effects of *Curcuma zedoaria* oil on high blood sugar level and gingivitis
 Juni Handajani and Dhimintya Hyta Narissi ... 69–73

5. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products
 Koh Hui Yee, Alma Linggar Jonarta, and Regina TC. Tandellin ... 74–79

6. The level’s changing of transforming growth factor β2 during canine retraction in non-growing age patient
 Adianti and Ameta Primasari ... 80–83

7. Fungal inhibitory effect of *Citrus Limon* peel essential oil on *Candida albicans*
 Iwan Hernawan, Desiana Radithia, Priyo Hadi, and Diah Savitri Ernawati ... 84–88

8. Expression analysis of CD63 in salivary neutrophils and the increased level of *Streptococcus mutans* in severe early childhood caries
 Muhammad Ludhi ... 89–93

9. The decrease of fibroblasts and fibroblast growth factor-2 expressions as a result of X-ray irradiation on the tooth extraction socket in *Rattus norvegicus*
 Fatma Yasmin Mahdani, Intan Nirwana, and Jenny Sunariani ... 94–99

10. The effects of golden sea cucumber extract (*Stichopus hermanii*) on the number of lymphocytes during the healing process of traumatic ulcer on wistar rat’s oral mucous
 Ira Arundina, Yuliat, Pratiwi Soesilawati, Dian W Damaiyanti, and Dania Maharani ... 100–103

11. The cleanliness differences of root canal irrigated with 0.002% saponin of mangosteen peel extract and 2.5% NaOCl
 Anis Sakinah, Laksmiari Setyowati, and Devi Eka J ... 104–107
The effects of golden sea cucumber extract (Stichopus hermanii) on the number of lymphocytes during the healing process of traumatic ulcer on Wistar rat’s oral mucous

Ira Arundina,1 Yuliati,1 Pratiwi Soesilawati,1 Dian W Damayanti,2 and Dania Maharani1
1 Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga
2 Department of Pharmacology, Faculty of Dentistry, Universitas Harapan Muda
Surabaya-Indonesia

ABSTRACT

Background: Indonesia is a country with the world’s biggest potential and producer of sea cucumbers. Golden sea cucumber contains glicosaminoglycans, such as heparan sulphate and chondroitin sulphate, which could have a positive implication on wound healing process. This acceleration of wound healing process could be observed through the increasing of lymphocytes on ulcer traumatic. Purpose: This study aims to analyze the effects of golden sea cucumber extract on the number of lymphocytes during the healing process of traumatic ulcer on Wistar rat’s oral mucous. Method: Golden sea cucumber extract was made with freeze-dried method, and then gel was prepared using PEG 400 and PEG 4000 solvent. Twenty male rats with mucosal ulcer made were divided into a control group and three treatment groups with 20%, 40% and 80% golden sea cucumber extracts. All samples were euthanized on day 4 and then a preparation for histopathological examination was made to examine the number of lymphocytes. Result: The biggest number of lymphocytes was found in the treatment group with 40% golden sea cucumber extract, while the lowest one was found in the control group. The results of one way Anova test then showed a significant difference between the control group and the treatment groups. And, the results of Tukey HSD showed a significant difference between the control group and the treatment group with 40% golden sea cucumber extract. Conclusion: It can be concluded that 40% golden sea cucumber (Stichopus hermanii) extract can increase the number of lymphocytes during the healing process of traumatic ulcer on Wistar rat’s oral mucous.

Keywords: Wound healing; traumatic ulcer; Stichopus hermanii’s extract; glicosaminoglycans, lymphocytes

Correspondence: Ira Arundina, c/o: Departemen Biologi Oral, Fakultas Kedokteran Gigigi Universitas Airlangga. Jl Mayjen. Prof. Dr. Moestopo no. 47 Surabaya 60132, Indonesia. E-mail: arundinafkq@yahoo.com

INTRODUCTION

Ulcer is a lesion eroding epithelial tissue with clear border. Ulcer mostly found in several cases in communities is traumatic ulcer triggered by trauma and stomatitis aphotosa recurrent (SAR) that can happen spontaneously and recurrency.1,2 Traumatic ulcer on the mucous membranes of the oral cavity is a clinical appearance of inflammation indicated by an area with exudat and surrounded by connective tissue. Inflammation is a process of destroying antigens and microorganisms moving into the body or a damaged tissue.3 Inflammation process, moreover, involves the roles of blood vessel and inflammatory cells, such as leukocytes (neutrophil, eosinophil, basophil, monocytes, and lymphocytes) and macrophage. Lymphocytes have an important role in destroying microorganisms moving into the body (antigen) during the process of inflammation.4

Traumatic ulcer, furthermore, can be treated with certain medical therapies, namely topical corticosteroid, sodium bicarbonate with water, or mouthwash with antiseptics, such as 0.2% chlorhexidine gluconate or benzylamine hydrochloride. Unfortunately, the side effect of using chlorhexidine in a long term is the change of tooth colour.5

Indonesia is a country with the biggest sea cucumber potential in the world. The production of sea cucumber in
Indonesia in 1994 was about 1,318,000 kg. The newest
data showed that the production of sea cucumber was 42
ton during 2004.6

Golden sea cucumber has been used in China and
Malaysia as traditional medicine and has been known as
an effective tonic for wound and burn healing process.7
Golden sea cucumber contains big bioactive materials, one
of which is glycosaminoglycan. Many previous researches
show that glycosaminoglycans (GAG) sulphate, such as
chondroitin sulphate and heparan sulphate, have a positive
effect on the wound healing process.8

Moreover, lymphocytes act in the process of wound
healing by realausing lymphokines affecting the number of
other inflammatory cells. One of the lymphokines produced
is interleukin -2 (IL-2). IL-2 can bind with heparan sulfat
that can help the proliferation process of T lymphocytes.9
T lymphocytes will secrete transforming growth factor-
(TGF-β). TGF-β functionates to stimulate fibroblast
proliferation which plays a role on wound healing.10 Many
previous researches show that the water extract of golden
sea cucumber could increase the number of fibroblasts
cells with optimal concentration of water extract from golden
sea cucumber as much as 40% on the traumatic ulcer of
Wistar rats.11

As the biggest producer of sea cucumber, thus, Indonesia
should harness the potential. The acceleration of wound
healing can be observed by the increasing of lymphocytes.
Therefore, this study aims to analyze the effects of water
extract from golden sea cucumber with the concentrations
of 20%, 40%, and 80% on the number of lymphocytes
during the wound healing process of Wistar rat.

MATERIALS AND METHOD

This study is a laboratory experimental research with
Randomized Post test only control group design. This
study was conducted with both variables after treatment
using random sampling, and a negative control group as a
comparison. This study used 20 male rats aged around 2-4
months old and weighed 200-300 grams as samples (Rattus
norvegicus) with certain criteria, such as normal lower lip
mucus and no abnormalities in physical condition.12

Ulcer was made by inhalation anesthesia. Wistar rat’s
lower lip mucous was wounded by no 4 burnisher with 2
mm diameter that had been heated for 1 minute, and it was
then touched to Wistar rat’s lip mucous for 1 second.13 The
samples were divided into four treatment groups, namely
the 1st treatment group with 80% golden sea cucumber
extract, the 2nd treatment group with 40% golden sea
cucumber extract, the 3rd treatment group with 20% golden
sea cucumber extract, and the 4th group with aquadest as
the control group.

Furthermore, the golden sea cucumber extract gel with
20%, 40%, and 80% concentrations was then applied one
time to ulcer as much as 0.1 mg for each treatment group.
Afterward, those rats were sacrificed using ether in lethal
doses on the 4th day. The lower lip mucous of those rats
was cut until the corner of mouth including the ulcer part
and the normal part, and then put in fixation solution, while
the dead rats were buried.14

Moreover, the number of lymphocytes was measured
on histometric paraffin block preparation under compound
light microscope with 400x magnification. It means that cell
counting was conducted using graticulae dividing visual
from light microscope to a certain size for easy reading and
preventing cell duplication. Data obtained were derived from
the mean calculation in five visual areas of the graticulae.15
Normality test with one-sample Kolmogorov-Smirnov Test
was then conducted on each sample. The results showed
that the samples had a normal distribution (p>α=0.05).
Homogenitas test was also conducted. The results showed
that the samples were homogen (p>α=0.05). Next, Anova
test was conducted to examine the significance of the
difference between groups. Finally, Tukey HSD test was
conducted to examine the significance of the differences
between one group with the others (p<α=0.05).

RESULTS

Figure 1 shows lymphocytes on Wistar rat’s traumatic
ulcer during the histopathological preparation of the
treatment groups. The red arrows shows lymphocytes. The
mean and standard deviation of lymphocytes on each group
can be seen in Figure 2 and Table 2.

The biggest number of lymphocytes was found in the
treatment group with 40% golden sea cucumber extract,
while the lowest one was in the control group. Moreover,
the results of Tukey HSD test showed that there was a

Figure 1. Histological illustration of traumatic ulcer lymphocytes
on Wistar rat’s oral mucous. Male Wistar using HE
with 400x magnification. A) control group; B)
20% gold sea cucumber extract. C) 40% gold sea
cucumber extract. Illustration shows a significant
rise of lymphocytes. D) 80% Golden sea cucumber
extract.
Figure 2. The mean and standard deviation of wistar rat’s oral mucous lymphocytes.

Table 1. The mean and standard deviation of lymphocytes on day 4

<table>
<thead>
<tr>
<th>Group</th>
<th>X ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4.6 ± 1.51</td>
</tr>
<tr>
<td>20%</td>
<td>9.4 ± 1.14</td>
</tr>
<tr>
<td>40%</td>
<td>17.0 ± 12.63</td>
</tr>
<tr>
<td>80%</td>
<td>7.5 ± 1.64</td>
</tr>
</tbody>
</table>

Table 2. The results of tukey HSD analysis

<table>
<thead>
<tr>
<th>Control</th>
<th>20%</th>
<th>40%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>0.628</td>
<td>*0.028</td>
</tr>
<tr>
<td>20%</td>
<td>0.628</td>
<td>-</td>
<td>0.257</td>
</tr>
<tr>
<td>40%</td>
<td>*0.028</td>
<td>0.257</td>
<td>-</td>
</tr>
<tr>
<td>80%</td>
<td>0.869</td>
<td>0.958</td>
<td>0.095</td>
</tr>
</tbody>
</table>

(* = a significant difference/ significance (p<0.05)

significant difference between the treatment group with 40% golden sea cucumber extract and the control group. Meanwhile, there was no significant difference between the treatment groups with 20% and 80% golden sea cucumber extracts and the control group. The analysis of Tukey HSD results can be seen in Table 2.

DISCUSSION

Like the previous researches, golden sea cucumber extract with the concentrations of 20%, 40%, and 80% was given to Wistar rat’s lower lip mucous in this research. The previous researches show that the 40% golden sea cucumber extract is optimal to increase the number of fibroblasts in the healing process of traumatic ulcer. Euthanasia was conducted on the 4th day to examine the number of lymphocytes after the administration of golden sea cucumber extract on the treatment groups compared to the control group expected to achieve the highest number from day 5 to day 7 during the wound healing process. The administration of golden sea cucumber extract, consequently, is expected to accelerate the wound healing process.

Research data showed that golden sea cucumber extract could increase the number of lymphocytes on the treatment groups compared to the control group. On the 4th day, the number of lymphocytes significantly increased. This indicates that the administration of golden sea cucumber extract could accelerate the wound healing process. Moreover, the results of histological examination results showed that the biggest number of lymphocytes was found in the treatment group with 40% golden sea cucumber extract. 20% golden sea cucumber extract could not affect the number of lymphocytes, while 80% golden sea cucumber extract could decrease the number of lymphocytes. Therefore, it indicates that the concentrations of golden sea cucumber extract can differently affect, so the dose should be given correctly. Every drug has their own concentration rules. Putrami’s research proves that 40% golden sea cucumber extract is the most optimal concentration to increase angiogenesis on the Wistar rat’s traumatic ulcer healing process.

The increasing of lymphocytes compared to control group because of glycosaminoglycans contained in golden sea cucumber extract. Glycosaminoglycans, usually known as mucopolysaccharides, is a complex carbohydrate molecule which interacts with protein and involved in various physiological and pathological process. GAG consists of two types, namely GAG sulphate and GAG non sulphate. Examples of GAG sulphate are chondroitin sulphate, dermata sulphate, keratan sulphate, heparan sulphate, and heparin. Chondroitin sulphate and heparan sulphate have positive effects on wound healing process.

Heparan sulphate located in organs and tissue is part of the extracellular matrix, such as collagen, fibronectin and laminin. Various types of protein can bind with heparan sulphate, such as extracellular matrix, growth factor, cytokine and chemokine. Heparan sulphate is involved in various physiological processes, such as proliferation, migration, differentiation, and interaction between cells. Heparan sulphate is known for its substantial role in the variation of cell interactions, and its bond with various types of protein can put those proteins on the cell surface. The binding of cytokine with heparan sulphate can modulate the bioactivity of cytokine itself. Heparan sulphate can bind with various types of cytokines such as IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, Interferon-γ (IFN-γ), and fibroblast growth factor.

Lymphocytes is the centre of cell immunity system that has an important role in the inflammation process by destroying microorganisms entering the body (antigen) and forming immunity (antibody) in the form of immunoglobulin. The role of lymphocytes is to release lymphokines triggering the other inflammation of cell population. Some of the lymphokines released, consequently, can stimulate the aggregation of macrophage in wound healing process. T lymphocytes then secrete various
types of cytokine, one of which is IL-2. IL-2 function to activate macrophage by stimulating the synthesis of IFN-γ. T lymphocytes also produce TGF-β that function on the proliferation of fibroblast. 10

Some of the cytokines that can bind with heparan sulphate are IL-2 and IFN-γ. A research shows that the binding of heparan sulphate with IL-2 can trigger activation and proliferation of T lymphocytes. IL-2 is an autocrine growth factor for T lymphocytes. IL-2 is produced by lymphocytes. IL-2 has a role for the growth factor of lymphocytes itself.

On the other hand, a research shows that binding of heparan sulphate with IFN-γ can affect bioactivity of IFN-γ by protecting from proteolytic degradation. It can also trigger IFN-γ to bind with its receptor. IFN-γ is derived from the stimulation of IL-2. IFN-γ can activate macrophage. Consequently, it is also known as macrophage activating factor. 23 In addition, IFN-γ is considered as a major cytokine stimulant to activate monocytes and macrophage; as a result, the activated macrophage will activate lymphocytes and other cells that will work together in the inflammation process until the inflammation is gone. 22

Furthermore, heparan sulphate has a great effect on the immune response through the modulation of antigen presenting cell (APC). On of the APC, there are macrophages. When many macrophages are activated, they will release more cytokines, one of which is IL-1. IL-1 can contribute to the activation of lymphocytes. 23 Thus, the number of lymphocytes will increase. Finally, it can be concluded that golden seed cucumber extract could increase lymphocytes, and 40% golden seed cucumber extract is the most optimal concentration in increasing lymphocytes during the process of Wistar rat’s oral mucous traumatic ulcer healing.

REFERENCES